Центральное отопление: классификация систем и их установка
Stroymir58.ru

Строительный портал

Центральное отопление: классификация систем и их установка

Системы теплоснабжения. Классификация систем теплоснабжения

Различают два вида теплоснабжения – централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное – ТС городского района;

3. городское – ТС города;

4. межгородское – ТС нескольких городов.

Процесс ЦТС состоит из трех операций – подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

– Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

– Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на:

– низкопотенциальное, с температурой до 150 0 С;

– среднепотенциальное, с температурой от 150 0 С до 400 0 С;

– высокопотенциальное, с температурой выше 400 0 С.

Коммунально-бытовая нагрузка относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная – 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис­точника теплоснабжения, тепловых сетей и абонентских установок на­зывается системой централи­зованного теплоснабже­ния.

Системы теплоснабжения клас­сифицируются по типу источника теплоты (или способу приготовле­ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово­дов тепловой сети, способу обеспе­чения потребителей, степени цент­рализации.

По типу источника теплоты раз­личают три вида теплоснабжения:

– централизованное теплоснабже­ние от ТЭЦ, называемое тепло­фикацией;

– централизованное теплоснабже­ние от районных или промышлен­ных котельных;

– децентрализованное теплоснаб­жение от местных котельных или индивидуальных отопительных аг­регатов.

По сравнению с централизован­ным теплоснабжением от котель­ных теплофикация имеет ряд пре­имуществ, которые выражаются в экономии топлива за счет комбини­рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова­ния местного низкосортного топли­ва, сжигание которого в котельных затруднительно; в улучшении сани­тарных условий и чистоты воздуш­ного бассейна городов и промыш­ленных районов благодаря концент­рации сжигания топлива в неболь­шом количестве пунктов, размещен­ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова­нию современных методов очистки дымовых газов от вредных при­месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ­ном на промышленных предприя­тиях, а водяные системы применя­ются для теплоснабжения жилищ­но-коммунального хозяйства и не­которых производственных потреби­телей. Объясняется это рядом пре­имуществ воды как теплоносителя по сравнению с паром: возмож­ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря­ми при транспортировке и большей дальностью теплоснабжения, отсут­ствием потерь конденсата греюще­го пара, большей комбинированной выработкой энергии на ТЭЦ, повы­шенной аккумулирующей способ­ностью.

По способу подачи воды на го­рячее водоснабжение водяные си­стемы делятся на закрытые и открытые.

В закрытых системах се­тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на­гретая в специальных водоводяных подогревателях за счет теплоты се­тевой воды.

В открытых системах се­тевая вода непосредственно посту­пает в местные установки горя­чего водоснабжения. При этом не требуются дополнительные тепло­обменники, что значительно упро­щает и удешевляет устройство або­нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе­ме) и состав воды, подаваемой по­требителям, ухудшается из-за при­сутствия в ней продуктов коррозии и отсутствия биологической обра­ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи­вает стабильное качество горячей воды, поступающей в установки го­рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го­рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры­тых систем являются усложнение и удорожание оборудования и экс­плуатации абонентских вводов из-за установки водо-водяных подо­гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают­ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе­мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры­той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе­мах поступает деаэрированная во­да, поэтому они меньше подвер­жены коррозии и более долго­вечны.

Недостатками открытых систем являются: необходимость устройст­ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под­питки не характеризует плотность системы); нестабильность гидравли­ческого режима сети.

По числу трубопроводов разли­чают одно-, двух- и многотрубные системы. Причем для открытой си­стемы минимальное число трубо­проводов — один, а для закры­той— два. Самой простой и перс­пективной для транспортировки теплоты на большие расстояния яв­ляется однотрубная открытая си­стема теплоснабжения. Однако об­ласть применения таких систем ог­раничена в связи с тем, что ее реа­лизация возможна лишь при усло­вии равенства расхода воды, необ­ходимого для удовлетворения отопительно-вентиляционной нагруз­ки, расходу веды для горячего водоснабжения потребителей дан­ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи­тельно меньше (в 3—4 раза) рас­хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб­жении городов преимущественное распространение получили двух­трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре­бителей теплотой различают одно­
ступенчатые и многоступенчатые системы теплоснабжения. В одно­
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп­ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату­ра для изменения параметров теп­лоносителя в местных системах по­требителей.

В многоступенчатых системах между источником теплоты и по­требителями размещаются цент­ральные тепловые пункты или под­станции (ЦТП), в которых пара­метры теплоносителя изменяются в зависимости от расходования теп­лоты местными потребителями. На ЦТП размещаются центральная по­догревательная установка горячего водоснабжения, центральная смеси­тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель­ные приборы. Применение много­ступенчатых систем с ЦТП позво­ляет снизить начальные затраты на сооружение подогревательной ус­тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве­личению их единичной мощности и сокращению числа элементов обо­рудования.

Оптимальная расчетная произ­водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос­нове технико-экономических расче­тов.

По степени централизации теп­лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные – теплоснабжение нескольких групп зданий, городское – теплоснабжение нескольких районов, межгородское – теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

– достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

– низкий коэффициент температурных деформации,

– обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

– малая шероховатость внутренней поверхности,

– высокая термическая сопротивление стенок трубы,

– способствующее сохранению теплоты и температуры теплоносителя,

– неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

– надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 – 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей .

Опоры. При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном , так и в осевом направлениях под действием веса , температурных деформаций и внутреннего давления.

Компенсаторы. Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П – и –S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор – достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

Не нашли то, что искали? Воспользуйтесь поиском:

Система центрального отопления многоквартирного дома и схема в квартире

Большая часть жилищного фонда отапливается за счет централизованных сетей. Центральное отопление остается востребованным и эффективным, несмотря на активное внедрение и использование альтернативных источников обогрева дома. Централизованные сети чаще всего применяются в многоквартирных домах. Бесперебойная работа и эффективность централизованного обогрева дома зависит от качественной сборки и исправности всех составляющих элементов.

Структурные элементы систем центрального отопления

Главное отличие централизованного отопления в том, что выработка тепла происходит за пределами отапливаемых построек. Доставка теплоносителя осуществляется по магистральным трубопроводам. Это сложная разветвленная инженерная система, которая обеспечивает тепловой энергией множество объектов и рассредоточена на большой площади.

Читать еще:  Как правильно рассчитать площадь крыши?

Главными элементами системы являются:

  1. Источником теплоэнергии выступают теплоэнергоцентрали или крупные котельные. Здесь теплоноситель подогревается за счет использования определенного источника энергии. В котельных сразу нагревается вода, которая и является теплоносителем. А в ТЭЦ вода разогревается до парообразного состояния. Потом этот пар подается в турбины для выработки электроэнергии, и только после этого отработанный пар подогревает теплоноситель.

Важно! Одна ТЭЦ стоит нескольких котельных. Таким образом, можно освободить больше площади, уменьшить строительные расходы и улучшить экологию.

  1. Разветвленная система трубопроводов называется теплосетями. Они предназначены для транспортировки теплоносителя на объект. Теплосети состоят из двух трубопроводов – подачи и обратки. Тепловые магистрали делают из труб диаметром 1-1,4 м, которые хорошо утепляются и прокладываются под землей или над ней. Для обеспечения маневренности и надежности работы теплосетей может использоваться несколько источников теплоэнергии, соединенных резервными магистралями.
  2. Потребителем тепла является отопительное оборудование (радиаторы), которое установлено внутри отапливаемого дома.

Классификация централизованного отопления

Существует множество схем отопления многоквартирного дома, централизованное отопление в свою очередь классифицируется по нескольким признакам.

В зависимости от особенностей потребления теплоэнергии

По типу потребления теплоэнергии сети делятся на такие разновидности:

  • круглогодичные, они обеспечиваются теплом постоянно;
  • сезонные, они функционируют только в холодное время года.

По типу теплоносителя

В качестве теплоносителя в системах централизованного обогрева построек могут использовать:

  • Воду. Этот вариант применяется чаще всего. Водяное отопление в квартире отличается простотой эксплуатации. Жидкий теплоноситель можно транспортировать на дальние расстояния с сохранением всех его характеристик. Кроме этого, температуру воды можно регулировать в котельной или ТЭЦ. Преимуществом являются и высокие санитарно-гигиенические качества жидкости.
  • Воздух. С использованием воздушных систем здание можно не только отапливать, но и вентилировать. Главный недостаток воздушной схемы в ее высокой стоимости, поэтому она не пользуется популярностью.
  • Пар. Эта разновидность самая экономичная, потому что реализуется с использованием труб малого диаметра. Эксплуатировать такие сети намного проще из-за низкого гидростатического давления. Паровые схемы чаще используются на промышленных предприятиях.

По способу подключения к системе теплоснабжения

Также существуют различные виды систем отопления многоквартирного дома в зависимости от способа их подсоединения к теплоснабжающей магистрали.

Они бывают двух видов:

  1. Зависимые. В таких сетях подогретый тепловой носитель поставляется по сетям непосредственно к потребителям тепловой энергии.
  2. В независимых схемах вода или водяной пар, который циркулирует по сетям, подогревает в теплообменнике тепловой носитель, который в свою очередь поставляется потребителю.

В зависимости от особенностей присоединения горячего водоснабжения

Кроме этого, отопление в многоквартирном доме классифицируется по типу подключения сетей горячего водоснабжения. Оно бывает открытого и закрытого типа. В первом случае горячая вода поступает в водопровод непосредственно из тепловой сети. При закрытой схеме забор воды происходит из общего водопровода. После этого она подогревается в сетевом теплообменнике ТЭЦ.

Устройство и принцип работы централизованного отопления многоквартирного дома

Теперь разберемся в устройстве отопления в многоквартирном доме. Поскольку каждое здание подключается к общей теплосети, на трубопроводах подачи в дом устанавливаются задвижки. От одной подающей трубы может питаться 1-2 тепловых узла. После задвижек следуют грязевики. В них оседают различные примеси и соли металлов, образующиеся в трубопроводе при контакте с нагретой водой. Грязевики продлевают срок службы отопительных сетей.

После них идет врезка труб горячего водоснабжения. Одна труба установлена на подающем трубопроводе, а другая – на трубе с обраткой. Поскольку температура теплоносителя в трубах подачи может доходить до 130°С, в холодное время года горячая вода берется из обратки, где теплоноситель не горячее 70 градусов. В теплый сезон ГВС переключается на забор с труб подачи.

После врезки ГВС следует главный элемент системы – элеваторный узел. Здесь перегретый теплоноситель охлаждается до требуемой температуры. Узел состоит из стального корпуса с соплом внутри, которое предназначено для подачи воды, идущей с ТЭЦ, с меньшим давлением, но более высокой скоростью. Это способствует подсосу теплоносителя из обратки. За счет смешивания горячей и охлажденной воды достигается оптимальная температура жидкости.

Важно! Для регулировки температуры теплоносителя и степени нагрева батарей изменяют диаметр элеваторного сопла.

После элеватора следуют задвижки, которые отвечают за отключение отдельных подъездов или всей постройки от системы отопления. Летом эти задвижки закрыты, а в отопительный сезон их открывают. За задвижками устанавливаются спускные краны. Они предназначены для слива теплоносителя из сетей дома или для их заполнения водой после ремонта. Иногда этот вентиль соединяется с сетями холодного водоснабжения. На входе в дом или отдельные подъезды обязательно устанавливается тепловой счетчик.

Розливы и стояки

В многоквартирных домах чаще используется однотрубная разводка с верхней или нижней подачей теплоносителя в отопительные приборы. Трубопроводы подачи и обратки могут разводиться в подвале либо подающие трубы монтируют на чердаке (техэтаже), а обратка прокладывается в подвале.

Вертикальные стояки бывают следующих типов:

  • с встречным движением теплового носителя снизу вверх;
  • с попутным током теплоносителя;
  • вода движется сверху вниз.

При реализации схемы с нижней подачей пары стояков соединяются перемычками. Эти перемычки устанавливаются в квартирах на верхнем этаже или на чердаке. В самой верхней точке соединяющей перемычки устанавливается воздухоотводчик, например, кран Маевского. Главный минус такого варианта в завоздушивании системы после каждого слива носителя. Поэтому приходится спускать воздух на каждой перемычке.

При верхней подаче на техэтаже дома монтируется расширительный бак с воздухоотводчиком, а также вентили для отключения каждого стояка. Если при прокладке разводки обеспечить правильный уклон, то теплоноситель можно быстро сливать.

Однако такая схема имеет насколько нюансов:

  1. Когда вода движется вниз, температура отдельных приборов постепенно уменьшается. Для компенсации теплопотерь увеличивают количество секций на нижних этажах либо применяют конвекторы большей площади.
  2. При запуске системы нужно на короткое время открывать воздухоотводчик на расширительном баке.
  3. Для слива теплоносителя с определенного стояка нужно перекрыть этот стояк на техэтаже, а потом перекрыть соответствующий вентиль в подвальном помещении. Только после этого можно сливать воду.

Плюсы и минусы централизованного отопления

Централизованная система отопления многоквартирного дома имеет следующие преимущества:

  • Можно использовать недорогие виды топлива для подогрева теплового носителя.
  • Контролирующие службы постоянно проверяют техническое состояние и работоспособность сетей, чем обеспечивают их надежность и долговечность.
  • Простая эксплуатация и использование оборудования, которое не вредит экологии.

Недостаток централизованного отопления заключается в том, что оно работает строго по расписанию, поэтому включать и отключать обогрев дом по своему усмотрению не получится. Температуру нагрева отопительных приборов нельзя регулировать в каждой квартире отдельно.

Перепады давления и гидроудары также являются недостатком централизованного обогрева дома. В процессе транспортировки теплоносителя по магистральным сетям и разводке в доме происходят значительные теплопотери. Существенные расходы на покупку оборудования и его установку также считаются недостатками.

Классификация систем отопления, виды и назначение

Согласно нормативам, те помещения, в которых люди находятся более 2 часов подряд, должны в обязательном порядке отапливаться. В таких зданиях обустраиваются системы, основным назначением которых является поддержание оптимальной температуры в холодное время года. Видов отопительных сетей существует несколько.

По каким признакам могут подразделяться

Классификация систем отопления может производиться по нескольким признакам:

месту расположения нагревательного оборудования;

виду используемого теплоносителя.

Также такие сети могут подразделяться по типу применяемого оборудования и конструкции.

Виды отопительных систем по месту расположения нагревательного агрегата

В этом плане различают сети:

Называется такая классификация систем отопления – «по радиусу действия». Первый тип сетей используется для обогрева большого количества зданий. Нагревательное оборудование в данном случае располагается в отдельно стоящих постройках. К примеру, именно такая система предусматривается для отопления квартир городских многоэтажек, цехов предприятий, офисов.

В автономных системах нагревательное оборудование устанавливается непосредственно в том здании, за создание комфортного микроклимата в котором зимой и отвечает. Котлы и другое оборудование в данном случае, конечно же, используются менее мощные и дорогие.

Классификация систем отопления и их виды: автономные сети

Инженерные коммуникации этого типа чаще всего используются для обогрева малоэтажных загородных зданий. Также их зачастую обустраивают в разного рода хозяйственных постройках, гаражах и банях.

Классификация систем отопления зданий малой этажности производится прежде всего по виду используемого нагревательного оборудования. В старых небольших загородных жилых зданиях иногда обустраивается печное отопление. Но чаще всего в жилых частных домах в наше время используются все же автономные магистральные сети, за поддержание нужной температуры теплоносителя в которых отвечают котлы.

Иногда в качестве нагревательного оборудования в частных домах также используются электрические радиаторы, калориферы или тепловые пушки. В некоторых случаях в таких зданиях могут обустраиваться и комбинированные сети с котлом и, к примеру, печью или камином.

Классификация систем центрального отопления

Сети этого типа подразделяются на:

В первом случае теплоноситель для обогрева зданий отбирается непосредственно из водовода. В закрытых системах вода сначала нагревается в теплообменнике ТЭЦ.

Виды по типу используемого теплоносителя

Чаще всего для обогрева жилых или производственных помещений используются сети:

Классификация систем отопления в данном случае производится по типу используемого теплоносителя. Помимо водяных, паровых и воздушных, в строениях иногда могут использоваться сети, к примеру, радиационные, газовые, электрические. Печное отопление по-другому называют огневоздушным.

Что представляют собой водяные системы отопления

Такие сети считаются оптимальным вариантом для обогрева жилых зданий. Как в частных домах, так и в городских многоэтажках в подавляющем большинстве случаев монтируются именно водяные системы отопления.

В производственных помещениях такие сети также используются достаточно часто. Единственное — их нельзя монтировать в зданиях, предназначенных для хранения таких химических веществ, к примеру, как:

литий и некоторые другие.

То есть такие отопительные сети не собираются там, где хранятся или используются в производственном процессе вещества, способные возгораться при контакте с водой.

В качестве нагревательного оборудования в системах этого типа чаще всего используются котлы. Вода в сетях этого типа циркулирует по трубам, протянуты по помещениям. Непосредственно же за обогрев здания отвечают радиаторы отопления, установленные в комнатах или цехах.

Основным преимуществом водяных систем является то, что батареи и трубы в данном случае не разогреваются слишком сильно. Следовательно, и исключается возможность появления ожогов при случайном контакте с ними. Также на батареях и магистралях таких сетей не горит и не спекается пыль.

Два основных типа водяных систем

В жилых зданиях, в свою очередь, могут использоваться водяные сети:

с естественным током теплоносителя;

с принудительным током.

В этом случае классификация систем отопления производится по способу передвижения теплоносителя по трубам. В сетях первого типа вода от котла и обратно к нему перемещается под действием силы гравитации. В таких коммуникациях используются трубы значительного диаметра. Магистрали же при этом собираются с небольшим уклоном.

В системах отопления принудительного типа за передвижение теплоносителя отвечает циркуляционный насос. Такие сети, хотя и являются энергозависимыми, обустраиваются в жилых, офисах и производственных зданиях чаще всего. Трубы в таких коммуникациях обычно имеют не слишком большое сечение и не портят внешнего вида помещений. Преимуществом систем с принудительной циркуляцией воды, по сравнению с гравитационными, является, помимо всего прочего, и то, что их можно обустраивать в зданиях значительной площади и этажности.

Иногда вместо воды в системах отопления в качестве теплоносителя используется антифриз — вещество, не замерзающее при температуре внешней среды ниже нуля. Такие сети монтируются в тех зданиях, которые посещаются людьми лишь время от времени. При использовании антифриза в качестве теплоносителя при отключении котла зимой исключается возможность размораживания труб и другого оборудования системы.

Типы по конструкции

Помимо всего прочего, в зданиях могут обустраиваться сети:

Читать еще:  Закрытое крыльцо для частного дома: варианты конструкций

В этом случае классификация систем водяного отопления производится по типу разводки контура в помещениях. В сетях первого типа теплоноситель подается от котла и возвращается к нему по одной закольцованной магистрали. Радиаторы в таких коммуникациях подключаются последовательно. Основным недостатком систем этого типа является неравномерный нагрев помещений. Ведь последние батареи при использовании такой схемы нагреваются хуже расположенных ближе к котлу. Для компенсации этого недостатка при монтаже однотрубных систем приходится использовать специальную регулирующую и запорную арматуру.

В двухтрубных системах вода в контур отопления поступает по одной трубе, а возвращается — по другой. Все радиаторы в сетях этого типа разогреваются до одинаковой температуры. Но монтировать такие системы сложнее, чем однотрубные. К тому же и обходится их сборка дороже.

Коллекторные системы водяного отопления обычно монтируются в домах выше одного этажа. Магистраль от котла в данном случае подводится сначала к распределительной гребенке. Далее уже от такого коллектора монтируются отдельные контуры на каждый радиатор и другие потребители.

Виды используемого оборудования

Классификация систем водяного отопления, таким образом, может производиться по разным признакам. Но и само оборудование в такие сети может включаться разное. В большинстве случаев при обустройстве систем отопления в жилых и производственных зданиях в качестве основного нагревательного оборудования используются котлы. Такие агрегаты, в свою очередь, могут быть паровыми или водяными.

По виду используемого топлива же котлы подразделяются на:

Также в зданиях могут устанавливаться электрические агрегаты этого типа.

В конструкцию любой водяной системы отопления в обязательном порядке включается расширительный бак. Вода при перепадах температур, как известно, способна увеличиваться в объеме. В результате в магистрали системы отопления создается слишком большое давление, что может привести к порче оборудования и разрыву труб.

Для компенсации давления в водяных системах отопления и используются расширительные баки. По виду такого оборудования сети этого типа классифицируются на:

В первом случае расширительные баки устанавливают обычно на значительной высоте от уровня котла. Представляют они собой открытые устройства.

В закрытых системах отопления используются герметичные расширительные баки. Устанавливается оборудование этого типа рядом с котлом. В обоих случаях бачки чаще всего монтируются на трубе обратки, то есть на той магистрали, по которой уже остывший теплоноситель возвращается в нагревательный агрегат.

Классификация циркуляционных насосов систем отопления выглядит примерно следующим образом:

оборудование с «сухим» ротором;

приборы с «мокрым» ротором.

Второй тип насосов обычно используется для перекачки небольших объемов теплоносителей. Основным преимуществом такого оборудования является простота в установке и использовании.

Насосы с «сухим» ротором отличаются высоким КПД и нетребовательностью к качеству теплоносителя. Но такое оборудование является довольно-таки шумным.

Классификация приборов систем отопления может производиться и по особенностям их конструкции. В этом плане различают насосы:

консольные, монтируемые на фундаменте;

блочные, комплектуемые двигателями с воздушным охлаждением;

inline, с патрубками, находящимися на единой оси.

Радиаторы в системах отопления могут использоваться чугунные, алюминиевые или биметаллические.

Что представляет собой паровая система отопления

Такие системы по принципу работы сходны с водяными. Единственное, в сетях этого типа по контуру разводки циркулирует не вода, а пар. Основным преимуществом таких сетей является практически стопроцентный КПД. Недостатками же паровых систем считаются:

невозможность регулировки температуры нагрева радиаторов;

слишком сильный нагрев батарей и труб;

сравнительно недолгий срок службы оборудования.

Паровые сети

Классификация паровых систем отопления производится по показателям давления пара в магистралях. Различают сети этого типа:

Инженерные коммуникации первого типа используются для отопления зданий большой площади. Также такие системы монтируются в том случае, если теплоноситель приходится подавать на значительные расстояния. Системы низкого давления монтируются в домах малой площади. Вакуумные сети могут использоваться для автономного обогрева как жилых зданий, так и производственных.

Виды воздушных сетей

Такие сети также иногда используются для обогрева офисных, производственных и жилых помещений. Классификация систем воздушного отопления производится:

по способу передачи нагретого воздуха;

В первом случае различают:

системы с естественной циркуляцией;

По принципу работы воздушные сети могут быть:

с полной рециркуляцией;

с частичной рециркуляцией.

В качестве основного нагревательного оборудования в таких сетях используются калориферы. В системах с полной рециркуляцией воздух по каналам направляется в помещения, а затем возвращается обратно в калорифер. В прямоточных сетях после прохождения через комнаты и отдачи тепла он удаляется на улицу. Далее снаружи забирается новая порция воздуха. В системах с частичной рециркуляцией через калорифер одновременно проходят воздух, поступающий и из помещений, и с улицы.

Конвекторные и радиационные системы

Производиться классификация систем отопления зданий может и по типу используемых для обогрева радиаторов. Батареи, устанавливаемые непосредственно в помещениях, бывают:

Чаще всего в жилых домах монтируется первый тип радиаторов. Тепло окружающей среде такие батареи передают путем конвекции. Соприкасаясь с поверхностью радиатора этого типа, воздух нагревается и начинает подниматься вверх. Отдавая тепло окружающим предметам, воздух снова опускается вниз. Здесь он снова соприкасается с поверхностью радиатора.

Радиационные батареи работают по другому принципу. Такие приборы излучают в окружающее пространство инфракрасные лучи. В результате происходит нагрев не воздуха, а непосредственно расположенных в зоне действия радиатора предметов.

Обогрев теплиц

Классификация систем отопления теплиц может производиться по следующим признакам:

типу используемого теплоносителя;

виду применяемого оборудования.

По типу теплоносителя все отопительные сети, используемые в таких сооружениях, подразделяются на:

По виду применяемого оборудования они бывают:

Работают системы отопления теплиц примерно по тому же принципу, что и сети жилых зданий.

Какое оборудование может использоваться в теплицах

Обуславливается выбор конкретного типа системы отопления для теплицы в первую очередь ее размерами. Водяные и воздушные сети с котлами, к примеру, монтируются, конечно же, только в значительных по площади производственных сооружениях этого типа.

Небольшие частные теплицы чаще всего отапливаются электрическими или газовыми обогревателями.

При этом в первом случае могут использоваться приборы как конвекторного типа, так и инфракрасные. Второй тип обогревателей для таких сооружений считается более предпочтительным. Инфракрасное излучение имеет ту же природу, что и солнечный свет.

Иногда в теплицах, обустраиваемых на загородных участках, может устанавливаться и огневоздушное отопительное оборудование – то есть небольшие печи. В данном случае обогрев производится или с использованием дров, или же угля.

Вместо заключения

Подразделяться сети, отвечающие за обогрев зданий, таким образом, могут по таким признакам, как вид используемого оборудования, способы разводки контура, тип теплоносителя, назначение. О классификации систем отопления представление иметь стоит в том числе и владельцам загородных жилых домов. В случае необходимости это поможет выбрать для своего дома наиболее оптимальный вариант сети.

Классификация систем отопления

Системы водяного отопления различают:

а) по схеме соединения труб с отопительными приборами:

– однотрубные с последовательным соединением приборов;

– двухтрубные с параллельным соединением приборов;

– бифилярные с последовательным соединением сначала всех первых половин приборов, затем для течения воды в обратном направлении всех вторых их половин;

б) по положению труб, объединяющих отопительные приборы по вертикали или по горизонтали – вертикальные и горизонтальные;

в)по расположению магистралей:

– с верхней разводкой при прокладке подающей магистрали выше отопительных приборов;

– с нижней разводкой при расположении и подающей и обратной магистралей ниже приборов;

– с «опрокинутой» циркуляцией воды при прокладке обратной магистрали выше приборов;

г)по направлению движения воды в подающей и обратной магистралях:

– с тупиковым (встречным) движением воды в системе отопления

– попутным (в одном направлении) движением воды в системе отопления.

На рис. 1а) приведена схема вертикальной однотрубной системы насосного водяного отопления с верхней разводкой, с двусторонним (стояки 1, 2,4) и односторонним (стояки 3, 5) присоединением приборов к стоякам. Стояки показаны условно трех различных типов: нерегулируемого проточного (стояк 1); с замыкающими участками осевыми (стояк 2) и смещенными (стояк 3) с проходными регулирующими кранами (КРП, поставленные со стороны входа теплоносителя в приборы); проточно-регулируемого с обходными участками (стояки 4,5) с трехходовыми регулирующими кранами (КРТ).

На рис. 1б) дана схема вертикальной однотрубной системы насосного водяного отопления с нижней разводкой и П-образными стояками условно трех типов (по аналогии с рис. 1а): нерегулируемого проточного (стояк 7), регулируемого со смещенными замыкающими участками и кранами КРП (стояки 2, 2), проточно-регулируемого с обходными участками и кранами КРТ (стояки 4, 5). При непарных отопительных приборах восходящую часть стояков делают «холостой» (стояки 3, 5).

На рис. 1в) показана схема вертикальной однотрубной системы насосного отопления с опрокинутой циркуляцией воды и проточным расширительным баком. Стояки могут быть проточными (стояки 1, 5) или со смещенными обходными (стояки 2, 5) и замыкающими (стояк 4) участками. Проточный стояк 1 изображен с конвекторами типа «Комфорт-20», имеющими две горизонтально расположенные греющие трубы и регулирующий воздушный клапан.

На рис.2 приведена схема горизонтальной однотрубной системы насосного водяного отопления с ветвями условно различной конструкции. Проточная ветвь I изображена для радиаторов, установленных на двух этажах, причем радиаторы на первом этаже объединены воздушной трубой, на втором этаже снабжены воздушными кранами. Бифилярная ветвь II показана для трубчатых отопительных приборов (конвекторов, гладких и ребристых труб). Ветвь III дана для регулируемых приборных узлов с кранами КРП и замыкающими участками постоянной длины с дросселирующими вставками. Аналогично может быть выполнена ветвь с обходными участками и кранами КРТ, хотя в этом случае затруднен централизованный спуск воды.

На рис. 3 изображена схема вертикальной двухтрубной системы насосного водяного отопления с верхней (в левой части рисунка) и нижней разводкой. При нижней разводке удаление воздуха из системы может быть централизованным (через воздушную линию) и местным (через воздушные краны). В приборные узлы входят краны двойной регулировки (КРД) или краны повышенного гидравлического сопротивления – КРП с дросселирующим устройством (в системах отопления многоэтажных зданий с нижней разводкой).

Основные приборные узлы, относящиеся к горизонтальным двухтрубным системам с верхней разводкой показаны на рис. 4а), с нижней разводкой-на рис. 4б). Слева изображено змеевиковое (последовательное) соединение трубами таких приборов, как гладкие и ребристые трубы, плинтусные конвекторы, справа – присоединение колончатых радиаторов по схемам сверху-вниз (см. рис. 4,а) и снизу-вниз (см. рис. 4,б).

10.3. Последовательность проектирования системы отопления

Исходные данные для проектирования: назначение и технология, планировка и строительные конструкции здания; климатические условия и положение здания на местности; источник теплоснабжения; температура помещений.

Расчет теплового режима. Теплотехнический расчет наружных ограждений конструкций, расчет теплового режима в помещениях, определение тепловых нагрузок для отопления (см. раздел I и гл. 8).

Выбор системы. Выбор параметров теплоносителя и гидравлического давления в системе, вида отопительных приборов и схемы системы (с технико-экономическим обоснованием в необходимых случаях).

Конструирование системы. Размещение отопительных приборов, стояков, магистралей и других элементов системы. Деление системы на части постоянного и периодического действия, для позонного и пофасадного регулирования. Назначение уклона труб; схемы движения, сбора и удаления воздуха; компенсации удлинения и изоляции труб; мест спуска и наполнения водой стояков и системы. Выбор вида запор-но-регулирующей арматуры, ее размещение.

Конструирование заканчивают вычерчиванием схемы системы с нанесением тепловых нагрузок отопительных приборов и расчетных участков.

Теплогидравлический расчет системы. Гидравлический расчет системы. Тепловой расчет труб и приборов (см. гл. 9).

До гидравлического расчета проводят предварительный тепловой расчет (без учета теплоотдачи труб) отопительных приборов с греющими элементами из труб (конвекторы, змеевиковые радиаторы, бетонные панели), потери давления по длине которых заметно влияют на общие потери давления в стояках и ветвях. В этом случае предварительно выбранные размеры приборов уточняют после выполнения гидравлического расчета.

Читать еще:  Утеплители Ursa: преимущества и недостатки материалов

Допустимо делать окончательный тепловой расчет приборов любого вида до гидравлического расчета двухтрубных систем при скрытой прокладке труб.

После гидравлического расчета проводят сразу окончательный тепловой расчет «емкостных» отопительных приборов (радиаторы секционные и панельные колончатые, ребристые и гладкие трубы Dy = 40— 100 мм), потери давления в которых допустимо оценивать по местному сопротивлению на входе и выходе воды, а также тепловой расчет гравитационной системы отопления малоэтажных зданий.

Выбор системы отопления

При проектировании водяного отопления предпочтение отдается насосным однотрубным системам из унифицированных узлов и деталей с автоматическим пофасадным регулированием. Гравитационные системы применяют при отсутствии централизованного теплоснабжения, технико-экономическом обосновании их преимущества по сравнению с насосными или при технологической необходимости полного исключения шума и вибрации конструкций в здании.

Наиболее экономичные однотрубные системы проточного типа проектируют тогда, когда индивидуальное регулирование теплоотдачи отопительных приборов не обязательно или предусматривается установка приборов с воздушными регулирующими клапанами (например, конвекторов типа КН-20).

Однотрубные системы проточно-регулируемого типа (с кранами КРТ) используются в тех случаях, когда необходимо индивидуальное регулирование теплоотдачи приборов.

Однотрубные системы с замыкающими участками у приборов (с кранами КРП) применяют взамен проточно-регулируемых, когда требуется уменьшить потери давления в приборных узлах, несмотря на относительное увеличение площади нагревательной поверхности приборов (большее при узлах с осевым замыкающим участком, меньшее при узлах со смещенным замыкающим участком). Учитывают, что при смещенных замыкающих участках обеспечивается компенсация теплового удлинения этажестояков.

Вертикальные однотрубные системы рекомендуют для зданий, имеющих три этажа и более. Однотрубные системы с верхней разводкой устраивают для обеспечения централизованного удаления воздуха из системы вне рабочих помещений.

Однотрубные системы с нижней разводкой применяют в бесчердачных зданиях с техническими подпольями и подвалами, а также при необходимости поэтажно включать систему в действие в процессе строительства здания.

Однотрубные системы с опрокинутой циркуляцией воды устраивают преимущественно в зданиях повышенной этажности, в зданиях с обогреваемыми чердачными помещениями (с «теплыми» чердаками) или верхними техническими этажами. В таких системах рекомендуют применять отопительные приборы с греющими элементами из стальных труб (например, конвекторы).

Однотрубные системы следует разделять на две последовательно соединенные части, когда расчетная разность температуры воды превышает 45°С (например, 130-70°С).

Горизонтальные однотрубные системы рекомендуется применять в протяженных зданиях, в зданиях с ленточным остеклением, в зданиях, где каждый этаж имеет различное технологическое назначение или тепловой режим.

Бифилярные системы целесообразно устраивать при одинаковых тепловых нагрузках приборов, при автоматическом поддержании заданной температуры помещений путем пофасадного (вертикальные системы) или поэтажного (горизонтальные системы) количественного регулирования теплоотдачи отопительных приборов.

Вертикальные насосные двухтрубные системы с нижней разводкой могут применяться в зданиях, состоящих из разноэтажных частей, с установкой у отопительных приборов кранов КРД (малоэтажные здания) или КРП с дросселирующим устройством, т.е. повышенного гидравлического сопротивления (многоэтажные-до восьми этажей – здания), а также при установке индивидуальных автоматических регуляторов у каждого отопительного прибора.

Двухтрубные системы с верхней разводкой можно устраивать в малоэтажных зданиях (один-два этажа), особенно при естественной циркуляции воды. Такие системы используются для квартирного отопления при радиусе действия не более 15 м по горизонтали. Применения горизонтальных насосных двухтрубных систем следует избегать; при выборе по необходимости такие системы делают с попутным движением воды в магистралях.

Для сокращения длины и диаметра магистралей вертикальные системы отопления многоэтажных зданий рекомендуется применять с тупиковым движением воды, особенно если предусматривается автоматическое пофасадное регулирование. В насосных системах значительной протяженности при малой тепловой нагрузке стояков следует использовать для увязки потерь давления в параллельно соединённых участках (если расхождение при тупиковом движении воды превышает 15%) попутное движение воды в магистралях.

Виды систем отопления

Для того чтобы в холодный зимний период обеспечить в жилом помещении необходимые условия для проживания, нужна система, которая помогала бы поддерживать нужный температурный режим. Система отопления является наиболее удачным инженерным решением данной проблемы. Отопительная система поможет поддерживать в доме комфортные условия на протяжении всего холодного периода, но следует знать, какие бывают системы отопления в современности.

Системы отопления могут различаться в зависимости от разных критериев. Существуют такие основные виды систем отопления, как: воздушное отопление, электрическое отопление, водяное отопление, водяные теплые полы, и другие. Несомненно, важным вопросом является выбор вида системы отопления для своего жилища. Классификация систем отопления включает множество видов. Рассмотрим основные из них, а также проведем сравнение видов топлива для отопления.

Водяное отопление

Среди всей классификации систем отопления наибольшей популярностью пользуется водяное отопление. Технические преимущества такого отопления были выявлены в результате многолетней практики.

Несомненно, на вопрос, какие виды отопления бывают, именно водяное отопление первым приходит на ум. Водяное отопление обладает такими преимуществами, как:

  • Не очень большая температура поверхности различных приборов и труб;
  • Обеспечивает одинаковую температуру во всех помещениях;
  • Экономится топливо;
  • Повышены эксплуатационные сроки;
  • Бесшумная работа;
  • Простота в обслуживании и ремонте.

Главным компонентом системы водяного отопления является котел. Такое устройство необходимо для того чтобы нагревать воду. Вода является в таком виде отопления теплоносителем. Она циркулирует по трубам замкнутого типа, а потом тепло передается в различные отопительные компоненты, а от них уже обогревается все помещение.

Наиболее простым вариантом является циркуляция естественного типа. Такая циркуляция достигается благодаря тому, что в контуре наблюдается разное давление. Однако такая циркуляция может быть и принудительного характера. Для подобной циркуляции водяные варианты отопления должны быть оснащены одним или несколькими насосами.

После того, как теплоноситель проходит по всему контуру отопления, он полностью охлаждается и возвращается назад в котел. Здесь он снова нагревается и, таким образом, снова позволяет отопительным приборам выделять тепло.

Классификация систем водяного отопления

Водяной тип отопления может различаться по таким критериям, как:

  • метод циркуляции воды;
  • расположение магистралей разводящего типа;
  • конструкционные особенности стояков и схема, по которой соединяются все приборы обогрева.

Наибольшую популярность обретает система отопления, где циркуляция воды происходит посредством насоса. Отопление с циркуляцией воды естественного плана в последнее время применяется крайне редко.

В насосной отопительной системе нагрев теплоносителя может иметь место и благодаря водогрейной котельной, или термо воды, которая поступает из ТЭЦ. В отопительной системе вода может нагреваться даже посредством пара.

Прямоточное соединение используют тогда, когда допустима в системе подача воды с очень высокой температурой. Такая система будет стоить не так дорого, расход металла будет несколько меньше.

Минусом прямоточного присоединения считается зависимость теплового режима от «обезличенной» температуры теплоносителя в подающем тепловоде наружного типа.

Воздушное отопление

Такие виды отопления различных помещений считаются одними из самых старых. Впервые подобную систему применяли еще до нашей эры. На сегодняшний день такая отопительная система получила широкое распространение – как в общественных помещениях, так и производственных.

Популярностью для обогрева зданий также пользуется нагретый воздух. При рециркуляции такой воздух может подаваться в помещение, где происходит процесс смешивания с внутренним воздухом и, таким образом, воздух охлаждается до температуры помещения и снова нагревается.

Воздушное отопление может быть местного характера, в случае если в здании нет центральной приточной вентиляции, или же если поступающее количество воздуха меньше, чем необходимо.

В системах воздушного отопления нагревание воздуха происходит за счет калориферов. Первичный отопитель для таких компонентов является горячий пар или вода. Для того чтобы прогреть воздух в помещении, можно использовать и другие приборы для отопления или любые источники тепла.

Местное воздушное отопление

При вопросе, какое бывает отопление, местное отопление часто приравнивается только к производственным помещениям. Приборы местного отопления используются для таких помещений, которые используются лишь в определенные периоды, в помещениях вспомогательного характера, в помещениях, которые сообщаются с наружными воздушными потоками.

Главными приборами системы местного отопления являются вентилятор и нагревательный прибор. Для воздушного отопления могут применяться такие устройства и приборы, как: воздушно-отопительные устройства, тепловые вентиляторы или тепловые пушки. Такие приборы работают на принципе воздушной рециркуляции.

Центральное воздушное отопление

Центральное воздушное отопление делается в помещениях любого плана, если здание располагает центральной системой вентиляции. Такие типы систем отопления можно организовать по трем различным схемам: с прямоточной рециркуляцией, с частичной или полной рециркуляцией. Полная рециркуляция воздуха может использоваться, в основном, в нерабочие часы для дежурных видов отопления, или для того чтобы обогреть помещение перед началом рабочего дня.

Однако отопление по такой схеме может иметь место, если оно не противоречит никаким правилам противопожарной безопасности или основным требованиям гигиены. Для такой отопительной схемы должна быть использована система приточной вентиляции, но воздух будет забираться не с улицы, а с тех помещений, которые отапливаются. В центральной воздушной отопительной системе применяются такие конструктивные виды приборов отопления, как: радиаторы, вентилятор, фильтры, воздуховоды и другие приборы.

Воздушные занавесы

Холодный воздух может поступать в большом количестве с улицы, если в доме слишком часто открываются входные двери. Если не предпринять ничего для того чтобы ограничить количество холодного воздуха, который проникает в помещение, или не обогревать его, то он может негативно сказаться на температурном режиме, который должен соответствовать норме. Чтобы предотвратить данную проблему, можно в открытом дверном проеме создать воздушный занавес.

Во входах зданий жилого или офисного плана можно установить низкорослый воздушно-тепловой занавес.

Ограничить количество поступающего холодного воздуха снаружи здания имеет место благодаря конструктивным изменением входа в помещение.

Все большей популярностью в последнее время пользуются воздушно-тепловые занавесы компактного типа. Самыми эффективными занавесами считаются занавесы «щиберующего» вида. Такие занавесы создают струйную воздушную преграду, которая защитит открытый дверной проем от проникновения холодных воздушных потоков. Как показывает сравнение видов отопления, такой занавес позволяет сократить потери тепла почти в два раза.

Электрическое отопление

Нагрев помещения имеет место благодаря распределению воздуха, проходящего через приборную панель без того, чтобы нагревалась ее лицевая сторона. Это полностью обезопасит от различных ожогов и предотвратит любое возгорание.

Посредством электрических конвекторов можно обогреть любой тип помещения, даже если у вас имеется всего один источник энергии, такой как электричество.

Такие виды систем отопления зданий не требуют больших затрат для установки или ремонта, к тому же, могут обеспечить максимальный комфорт. Электрический конвектор можно просто поставить в определенное место и подключить его к питанию сети. Делая выбор системы отопления, можно обратить внимание на данный тип – довольно эффективный.

Принцип действия

Холодный воздух, который находится в нижней части здания, проходит через нагревательный компонент конвектора. Затем его объем увеличивается и он уходит вверх через выходные решетки. Обогревательный эффект имеет место и благодаря дополнительному излучению тепла с передней стороны панели электрического конвектора.

Уровень комфорта и экономичность такой обогревательной системы достигается благодаря тому, что в электрических конвекторах применяется электронная система, которая помогает поддерживать определенную температуру. Нужно всего-навсего установить необходимый температурный показатель и датчик, который установлен в нижней области панели начнет через заданный период времени определять температуру воздуха, который проникает в помещение. Датчик подаст сигнал на термостат, который в свою очередь подключит или наоборот выключит обогревательный элемент. Посредством такой системы для поддержания определенной температуры, которая даст возможность соединить электрические конвекторы в разных помещениях, для того чтобы обогреть целое здание.

Какая система лучше

Конечно же, вопрос какая система отопления лучше является нецелесообразным, так как та или иная система является эффективной в определенных условиях. Сравнение систем отопления следует производить, учитывая все их плюсы и минусы, ориентируясь на условия установки и собственные возможности.

Рассмотрев, какие системы отопления существуют, можно сделать для себя определенные выводы. Но в целом, лучшим вариантом станет посоветоваться с профессионалами.

Ссылка на основную публикацию
Adblock
detector